

	Temperature Effects	
As	temperature increases it adds energy to the diode	
	It reduces the required forward bias voltage for forward- bias conduction.	
	It increases the amount of reverse current in the reverse- bias condition.	
	It increases maximum reverse bias avalanche voltage.	
Geri	manium diodes are more sensitive to temperature variations	

ENEE236 – Analog Electronics

Resistance Levels

Semiconductors react differently to DC and AC currents.

There are three types of resistance:

DC (static) resistance

AC (dynamic) resistance

Average AC resistance

ENEE236 – Analog Electronics

Diode Checker

Many digital multimeters have a diode checking function. The diode should be tested out of circuit.

A normal diode exhibits its forward voltage:

Gallium arsenide \cong 1.2 V

Silicon diode \cong 0.7 V

Germanium diode $\simeq 0.3 V$

